

# Bayesian optimization for improved landslide risk mapping

Sylvain Robert, 25 March 2021, Swiss Re joint work with Michael Ewald, Thomas Phillips and Claudius Brüniger

### Outline

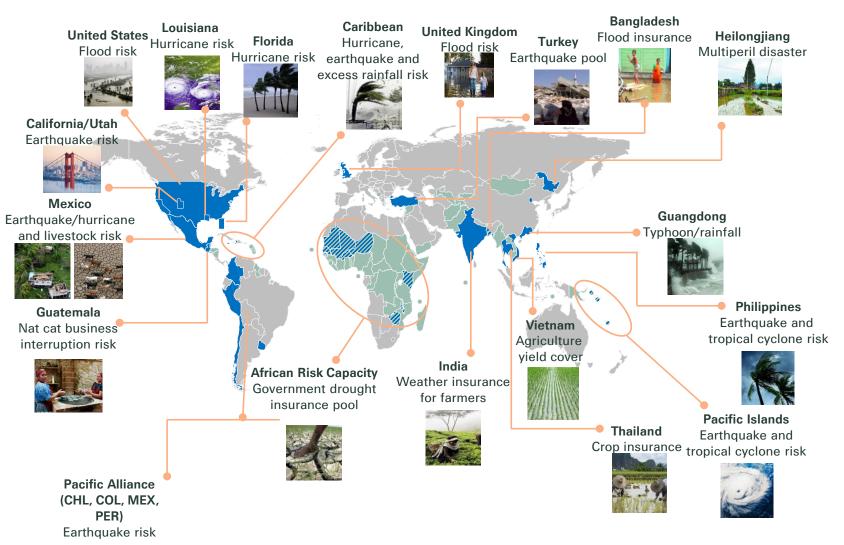
- Business context
- Methodology
- Results
- Conclusions





# Business context

## Swiss Re is a major reinsurer of natural catastrophe events







## Over 50 % of Nat Cat losses came from secondary perils in 2017 and 2018...



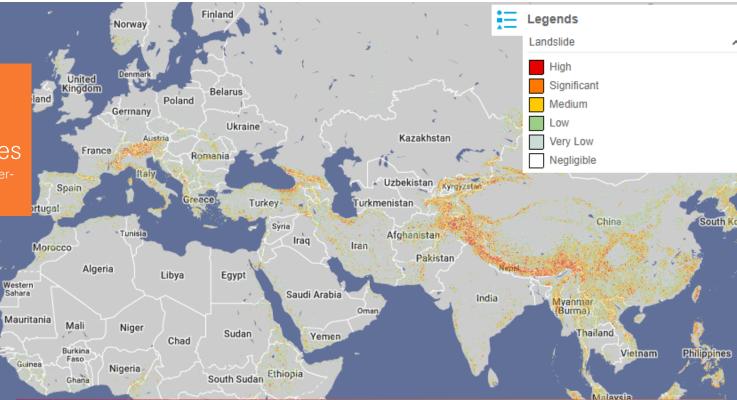
### ... still "secondary"?

## Landslide risks mapping in CatNet®

Every year, globally, landslides cause multiple **billions of losses** (of which only a fraction is insured) and **thousands of deaths** and injuries



Canada



#### Use cases:

- An **insurance company** evaluates the risk of NatCat at a given site before offering a home insurance policy
- An organisation such as the Red Cross uses our NatCat risk maps to plan its operations on the ground: where to build infrastructures, deploy help, etc.



# Methodology

### Landslide risk mapping for insurance

We make a distinction between two types of landslide risks:

High susceptibility risk

- The **susceptibility risk** is the risk of a landslide starting at a given location
- The **runout risk** is the risk of a location to be hit by a landslide

For insurance (and risk management) purpose, the runout risk is the most important! Usually houses are not built on slopes, but at the bottom...

High runout risk



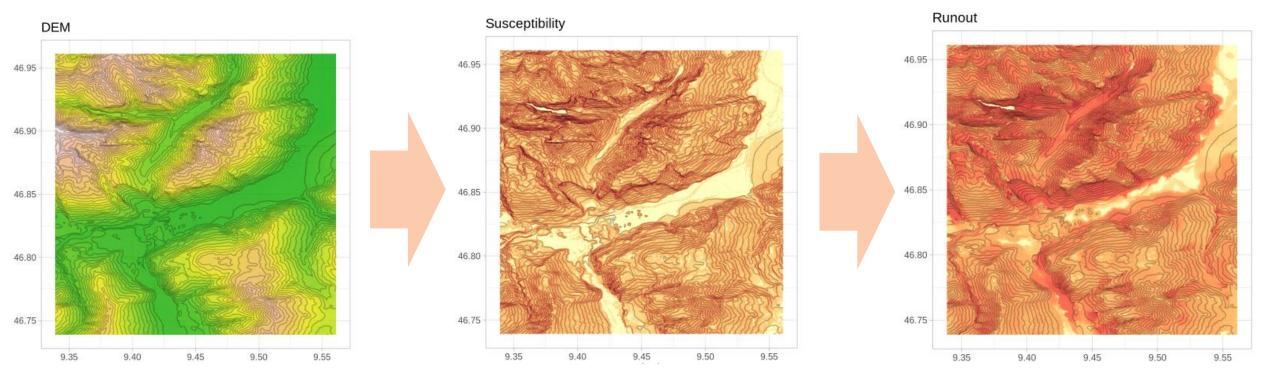
La Conchita – 1995 – California Source: R.L. Schuster/U.S. Geological Survey

### From landslide susceptibility to landslide runout

#### Susceptibility risk mapping (previous work done by Emanuel Bueechi)

Susceptibility = f(slope, geology, earthquake risk, rainfall risk)

#### Runout risk mapping new approach based on a simplified dynamical model of runout flow





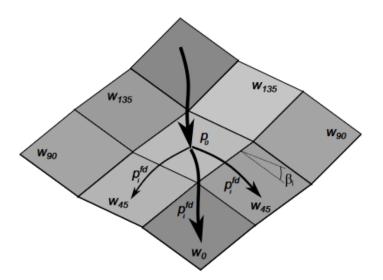
### Simplified runout model

Ideally we would use a physical model of runout flow. But...

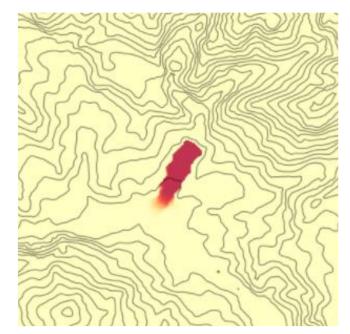
- expensive to compute
- accurate input required (DEM, soil depth, detachment areas, etc.)

Solution:

- start from our susceptibility map
- propagate the risk downhill, taking into account the slope and possible momentum
- iterate for many steps

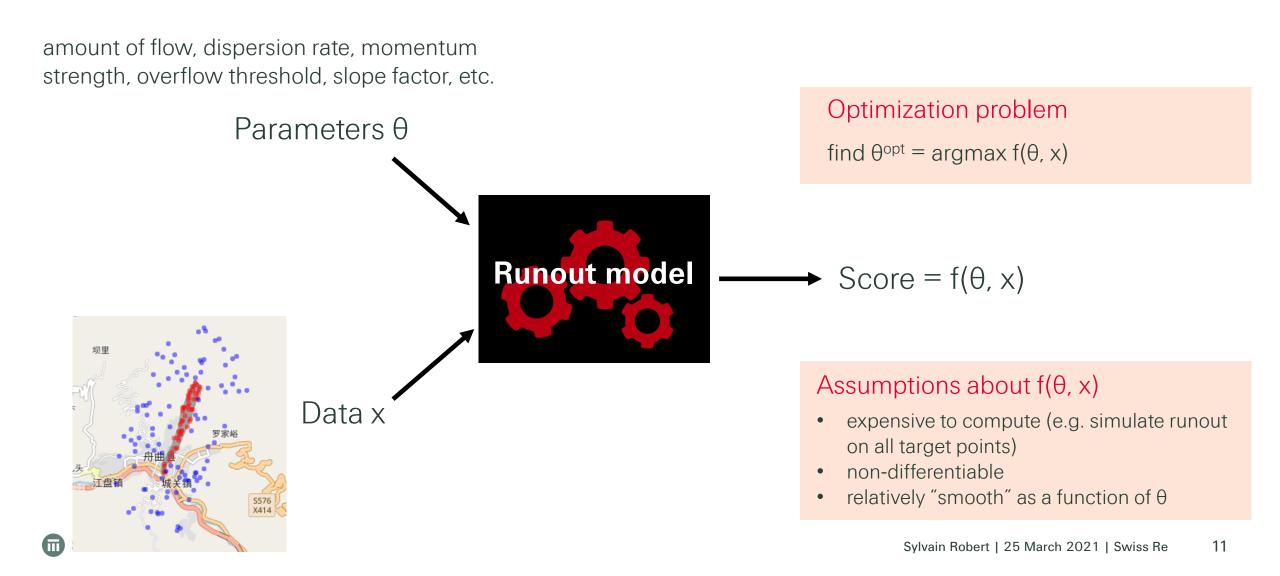


Spreading of susceptibility values to neighbouring cells Source: Horton et al. Nat. Hazards Earth Syst. Sci 2013



10

### Model training: an optimization problem



### Bayesian optimization in a nutshell

- 1. Place a **Gaussian process** prior on  $f(\theta)$
- 2. Observe  $f(\theta)$  at a set of initial points  $\theta$ : typical experimental design, grid search or random.
- 3. for n < N:
  - i. update the **posterior** distribution of  $f(\theta)$  given all observations so far
  - ii. pick a new  $\theta^n$  that maximizes the **acquisition function** over the posterior distribution
  - iii. evaluate objective function at candidate point:  $f(\theta^n)$
- 4. Return the optimal  $\theta^n$

Gaussian process: distribution over a space of function (defined by a mean function and a kernel)

Posterior distribution: specified by new mean function and covariance after having observed data

**Acquisition function**: controls the trade-off between exploration and exploitation. Examples are "expected improvements" or "upper confidence bound" (based on confidence intervals and optimism).

#### 🗊 Swiss Re

### Bayesian optimization in a nutshell

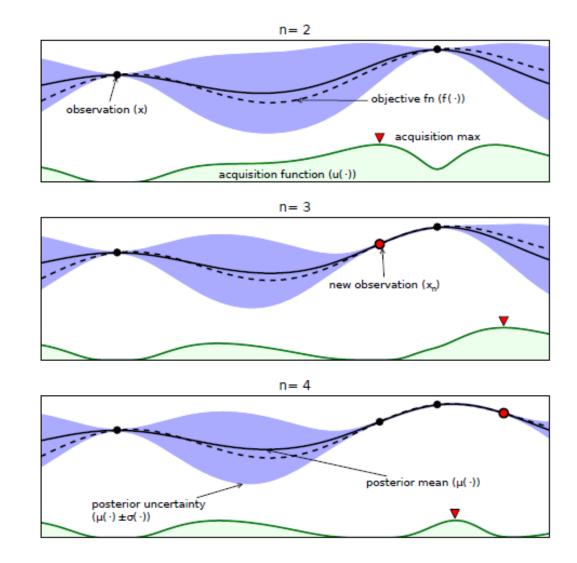
**Dotted black**: objective function (truth)

**Solid black**: posterior mean of  $f(\theta)$ 

**Purple**: posterior confidence bands of  $f(\theta)$ 

Green: acquisition function,

We see that the acquisition function is high either due to a high mean (exploitation) or to a high uncertainty (exploration). The algorithm explore possibly interesting regions (optimism) and focuses more and more on the region of highest score with iterations.



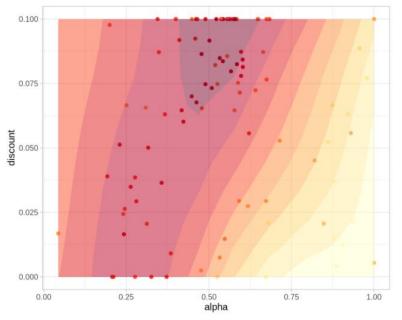
Source: Shahriari et al. IEEE 2016

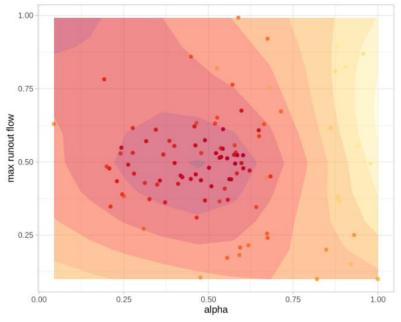
### Bayesian optimization for our runout model

Parameter space:

amount of flow (alpha), dispersion rate (discount), momentum strength, max runout flow, slope factor, etc.

Slices of the estimated  $f(\theta)$  and sampled points Remark: red gradient indicates the score







# Results

Domat/Ems

Tamins

Bonaduz

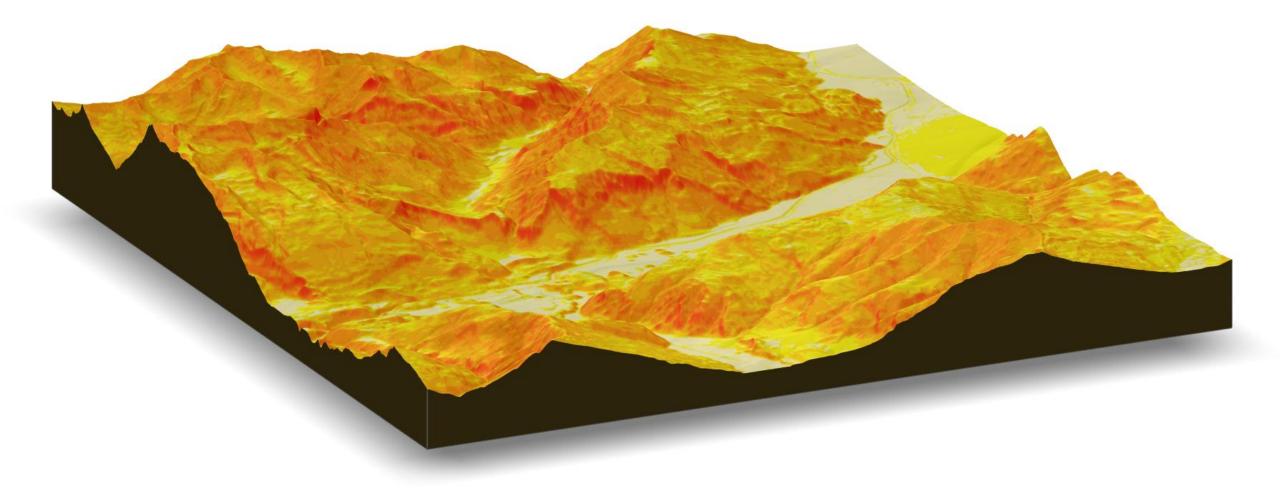
mand like

Rhäzüns

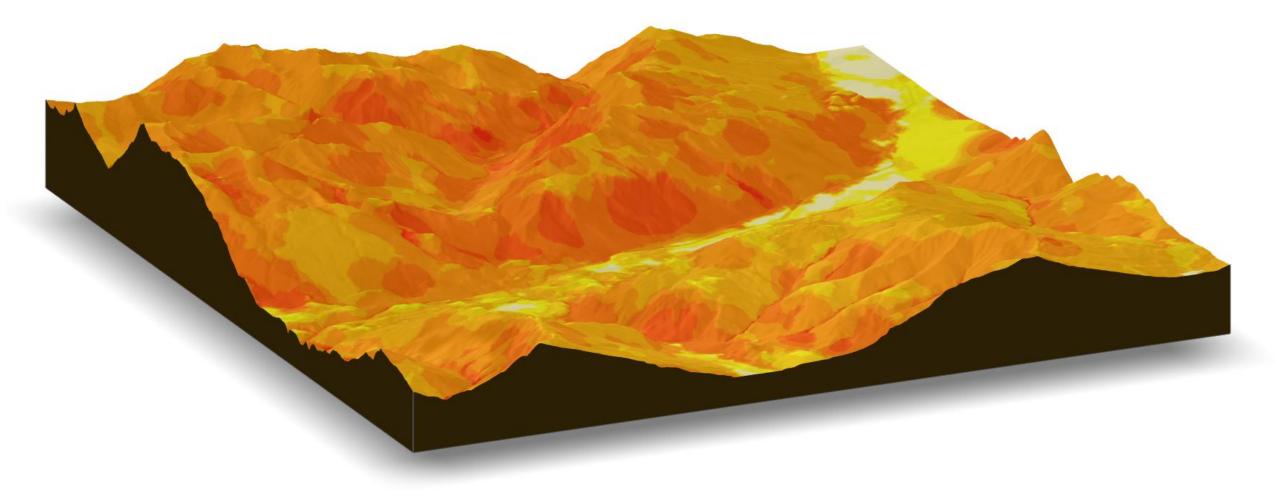
Feldis/Veulden

Graubünden (Switzerland) An area of known landslide risks

### Susceptibility



### Runout



### Sichuan (China) - 2017

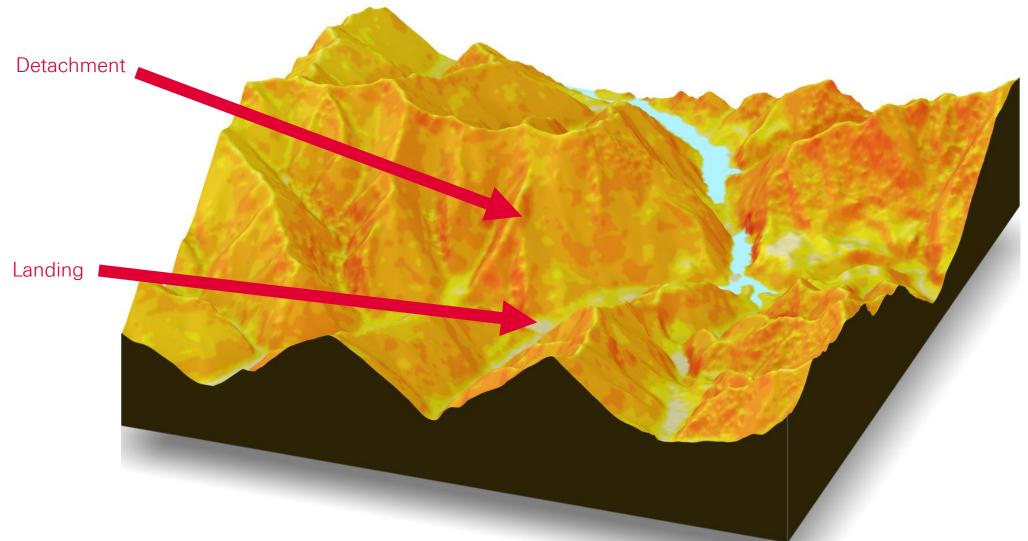
source: <u>https://blogs.agu.org/landslideblog/2017/06/25/xinmo-1/</u> 40 houses destroyed, more than10 people killed block road and river runout distance: 2600m

### Sichuan landslide footprint



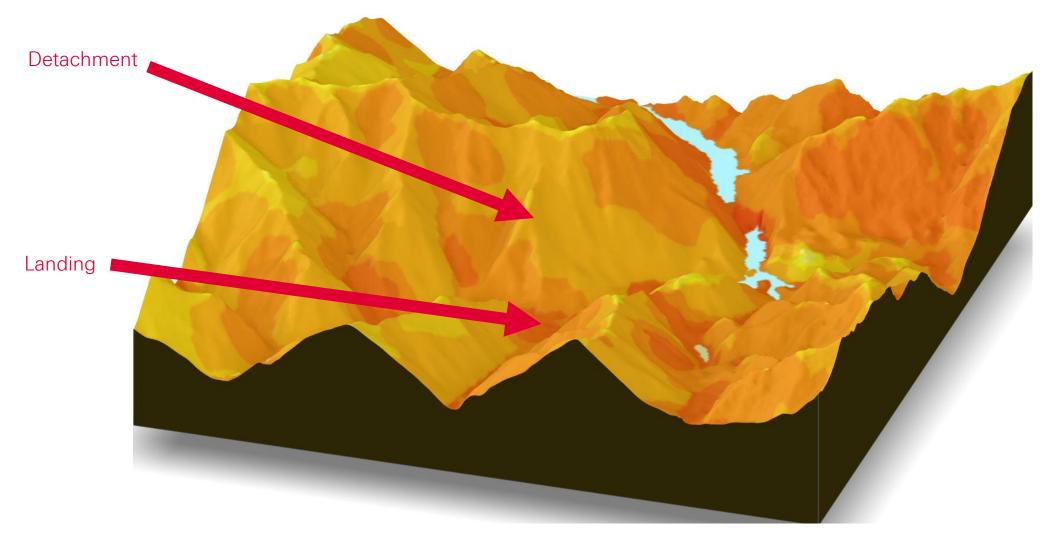


### Susceptibility map Underestimate the risk on the road and habitations below the slope





### Runout map Much better risk estimation at the bottom of the slope



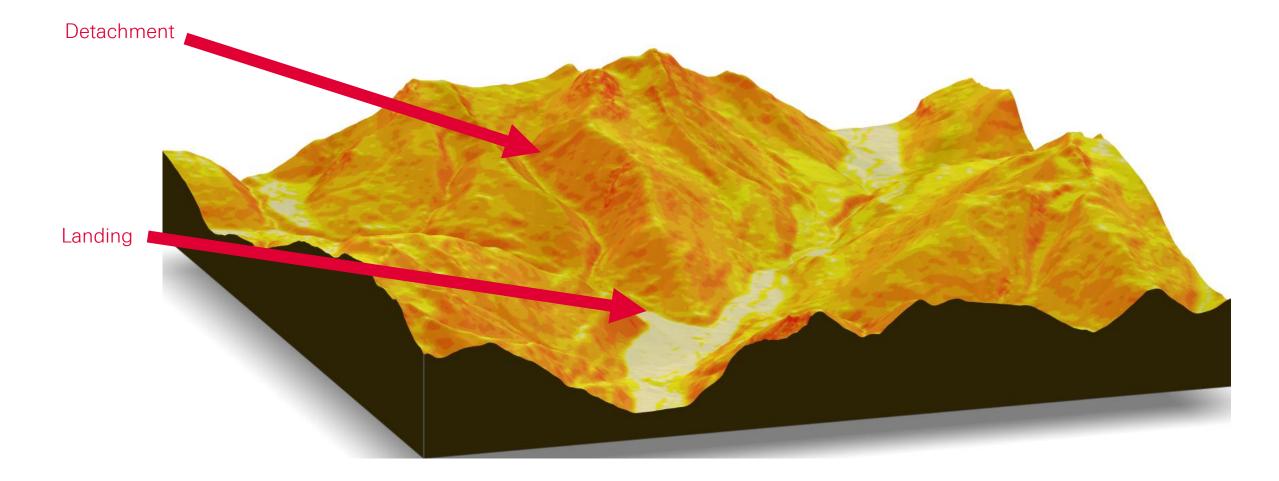
## Mount Meager (Canada) - 2010

source: <u>https://thetyee.ca/News/2010/08/12/MeagerLandslide/</u> infrastructures destroyed, 0 people killed block road and river runout distance: >7km!

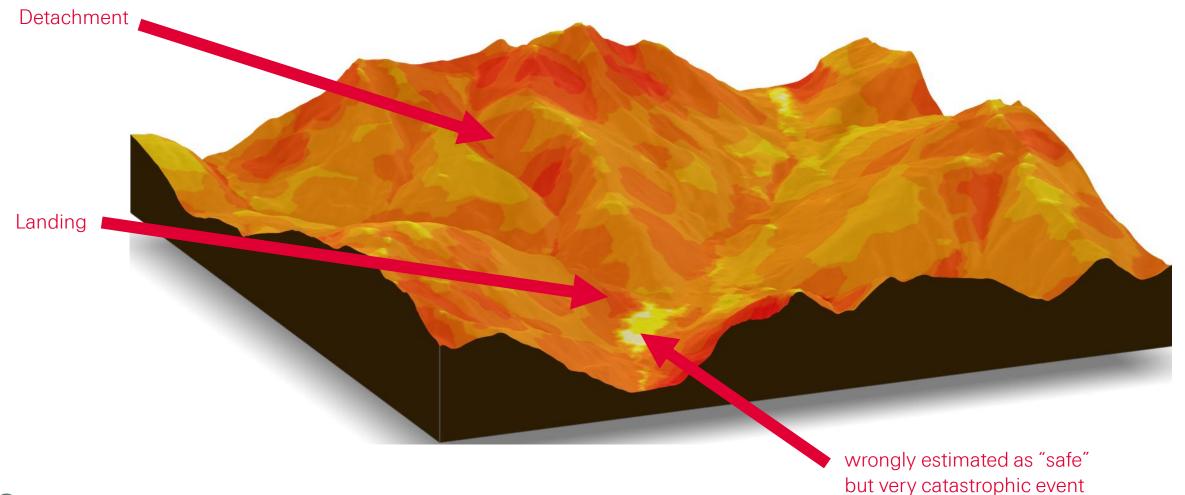
### Meager (Canada) landslide footprint



### Susceptibility map Underestimate the risk in the valley below



### Runout map Better estimation of risk downhill, but doesn't go as far as the actual landslide





# Conclusions



#### New runout model

- landslide susceptibility risk is not enough for insurance
- new runout model with simplified landslide dynamics

### **Bayesian Optimization**

- map the problem as an optimization (derivative-free)
- learn model parameters using data

#### Landslide risks mapping

- global coverage
- susceptibility and runout risks
- resolution 30m x 30m





### Legal notice

©2021 Swiss Re. All rights reserved. You may use this presentation for private or internal purposes but note that any copyright or other proprietary notices must not be removed. You are not permitted to create any modifications or derivative works of this presentation, or to use it for commercial or other public purposes, without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and may change. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for its accuracy or comprehensiveness or its updating. All liability for the accuracy and completeness of the information or for any damage or loss resulting from its use is expressly excluded.

